
A New Approach to Schedule Precedence
Constraint Tasks in Real Time Systems

Radhakrishna Naik R.R.Manthalkar Yogiraj P. Korde
Dept. of Comp. Sci. & Engg Dept. Of Ele. & Comm. Dept. of Info. Tech

 MIT, Aurangabad, India SGGSCOE,Nanded,India SRESCOE,Kopergaon,India

Abstract--In typical real time systems, tasks need to
communicate so as to achieve effective resource utilization.
Tasks should be scheduled considering their precedence
constraints. Modified rate monotonic scheduling, earliest
deadline scheduling algorithm and latest deadline first
scheduling algorithm do well in precedence constraint tasks
scheduling; however these algorithms do not take care about
overall contribution of individual tasks in tasks network.
This paper suggests novel idea which is considering both
contribution of individual tasks and deadline. This
algorithm is modification of performance contribution and
deadline (PCD) algorithm. It is proved through analysis
that, number of missing deadlines and context switching is
less as compared to PCD. Important feature of this
algorithm is that it supports both cyclic and acyclic process
structure for scheduling.
Keywords— Performance Contribution and Deadline (PCD),
Rate Monotonic (RM) and Earliest Deadline First (EDF)

I. INTRODUCTION

In this paper analysis of architecture is done keeping
in the view that individual messages between tasks have
been failed.

In a typical real time systems, tasks interact directly
or indirectly with each other. Tasks get interact in order to
synchronize their execution by a message transmission or
they may share the resources other than processor. These
resources may be exclusive or shared. This creates
precedence relationship among the tasks. Precedence
relationship is known before execution. Here tasks are
static and can be represented by a static precedence graph.
If a task is not ready, but its output is necessary for the
execution of next task then the next task has to wait for
the execution irrespective of its priority. But however it is
not possible to keep the processor idle for that time. Thus
it is essential to consider task dependency at the time of
scheduling.

In spite of the increased system complexity, real time
applications are mainly configured acting on the task
priorities based on single parameter, which usually
express the importance of task [1].There are other system
constraints like message communication, performability
and reliability, which need to set into priority levels.
Assigning priority with single parameter is not sufficient.

It is quite possible that in a task set, a task may be
having earliest deadline but its performance contribution
is low. Scheduling such tasks with highest priority does
not carry any meaning. Majority of today’s commercial
operating systems schedule the tasks based on a single
parameter. However recent research on flexible

scheduling showed that a single parameter is not enough
to express the entire application requirement.

In order to make the scheduling task more effective,
an algorithm for scheduling communicating tasks is
designed.This is a non pre-emptive precedence constraint,
offline scheduling algorithm intended for uniprocessor
architecture.

The objective of this algorithm is to decide that
whether or not it is possible to schedule tasks under the
given assignments such that all of their deadlines and
precedence constraints can be met. This is in contrast to
conventional methods which deal with either assignment
or scheduling of tasks considering either period or
deadline, alone but not both.

The algorithm deals with analysis of communication
network and tries to find out performance contribution of
each task with respect to each other. After identifying task
contribution in terms of message communication, they are
classified by considering both task contribution and
deadlines.
Following are features of proposed algorithm:
 Tasks communicate with each other during the course

of their execution to accomplish a common system
goal.

 The tasks to be allocated are invoked periodically at
fixed time intervals during the mission lifetime.

 Consequences of failure link on other task are
calculated.

 Accordingly task ranking is decided.

II. RELATED WORK
Since the first results published in 1973 by Liu and

Layland [1] on the Rate Monotonic (RM) and Earliest
Deadline First (EDF) algorithms, a lot of progress has
been made in the schedulability analysis of periodic task
sets. Unfortunately all analysis is done based on
schedulability, jitter, number of preemptions, runtime
overhead, robustness during overloads and the transient
overload etc. However today hardware technology is
improved. Hardware resources are cheaper and speed of
hardware has increased drastically. Therefore these issues
are not important now.
A. Issues involved in precedence constrained task
scheduling

Since the problem of assigning tasks subject to
precedence constraints is generally NP hard [4], hence it
is not possible to determine optimal schedule efficiency.
Some form of approximation using heuristics was
developed for this problem. For example CP/MISF

Radhakrishna Naik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3436-3443

3436

(Critical Path / Most Immediate Successors First),
enumeration tree of task is generated and searched using a
heuristic algorithm [5]. Chu and Leung [6] presented an
optimal solution to the task assignment problem in the
minimizing average task response time subject to certain
timing constraints. Shen and Tsai[7], Ma et al. [8] and
Sinclair[9] derived optimal task assignment to minimize
the sum of task execution and communication costs with
the branch and bound[10]. Considering embedded
system’s complexity growing day by day, task allocation
algorithm has been suggested for task control [11] and
turbo engine control [12].

Latest Deadline First Algorithm (LDF) suggested by
L.Lawler[13] is the only algorithm suggested for
uniprocessor precedence constrained task scheduling
which is as below:

Fig. 1: Example of LDF scheduling algorithm and its Gantt chart

It constructs a schedule from tail to head using a stack:
1. Pick up a task from the current DAG that has the

latest (Highest) deadline and does not precede
any other tasks (a leaf!)

2. Remove the selected task from the DAG and put
it to the stack. Repeat the two steps until the
DAG contains no more tasks.

3. Select the last task to run first.
The stack represents the order in which tasks should be
scheduled. Following figure 1 shows example of LDF
scheduling and its Gantt chart.

Although LDF is an optimal algorithm, it
supports only acyclic graph. It does not support cyclic
graph for analysis. It describes task priority only in terms
of deadline.

B. Use of modeling in predictability analysis

Modeling plays a central role in system engineering.
It was believed that modeling methodologies should be
closely related to implementation methodologies for
building correct real time systems, for supporting end to
end constraints at step in the design task [14].

Modeling system in the large became an important
research topic in both academia and industry [15]. A key
issue in a modeling methodology was the issue of
adequate operators to compose heterogeneous schedulers
(e.g. synchronous, asynchronous, event triggered or time
triggered). For this reason, some researchers proposed
model based theories for computing scheduling policies

[16]. Another challenge consists in adequately relating the
functional and non functional requirements of the
application software with the underlying execution
platform. Following were two approaches to address these
problems.

1. One relies on architecture description languages
that provide means to relate software and
hardware components e.g. meta-H [17].

2. The other is based on the formal verification of
automata based models automatically generated
from software and appropriately annotated with
timing constraints [18, 19].

Thus analyzing above survey in detail, it is clear that
MDE analysis can be used to design a scheduler specially
when there is much complexity involved so that one can
take corrective steps at design phase itself. As far as
uniprocessor is concerned, only LDF scheduling
algorithm is an optimal solution. However it supports
only acyclic task structure. For scheduling cyclic task
structure many heuristics have been suggested. These
heuristics are application specific not applicable to all
cases. Therefore it is essential to find out generalized
solution which will fit for both acyclic as well as cyclic
task structure.
 Following algorithm is suggested to deal above
discussed issues.
αPCD: Variance of PCD scheduling algorithm.

C. Performance Contribution Factor and Deadline
(PCD) scheduling algorithm
PCD scheduling algorithm described in Radhakrishna
Naik et al. [20] is as below

1. Various modules and taskes in the system to be
developed are identified. Signals between taskes
are also identified. Resources required for the
system are identified.

2. System’s behavior is presented using FDL in
EVENT STUDIO.

3. Task interaction collaboration diagram is
generated. It represents task communication
diagram.

4. Simplified task interaction diagram is evaluated
from task interaction collaboration diagram.

5. Precedence of taskes is identified and conditional
probability is calculated. If a task is dependent
on two or more taskes, then Bayes theorem for
conditional probability is used to find out
dependability of each task with others.

6. Accomplishment level for each task is assumed,
based on criteria that how many incoming links
are associated with each task.

7. Performance contribution factor (PCF) for each
task is calculated.

8. Tasks are classified on PCF and relative deadline
to four classes, class-I, class-II, class-III and
class-IV. While scheduling tasks, highest priority
is given to class with Highest PCF and quickest
deadline.

Radhakrishna Naik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3436-3443

3437

III. αPCD: VARIANCE of PCD SCHEDULING
ALGORITHM.

In αPCD, procedure of finding performance
contribution of a task and classifying in various classes
considering PCF and relative deadline is similar. Only
difference is that the quantum of execution of mandatory
portion is controlled by α parameter. This parameter is
calculated as shown in equation 1. For calculation of this
parameter highest priority task is being selected.
݄݈ܽܣ ฺ
ቔభିభ.

݊ && ݎݏݏ݁ܿ݁݀݁ݎ ݂ ݎܾ݁݉ݑ݊ ݏ݅ ݇| ݇ 0ቕ

 (1)
Taskes are classified based on PCF and deadline

as shown in the Table 1 and Table 2.

Table I: Classification of taskes for soft real time system based on
deadline

Priority Levels PCF(EG) Deadline(D)
Class-I High Low
Class-II Low Low
Class-III High High
Class-IV Low High

Table II: Classification of taskes for soft real time system based on

Performance

Priority Levels PCF(EG) Deadline(D)
Class-I High Low
Class-II High High
Class-III Low Low
Class-IV Low High

 Scheduling policy is same as that of PCD algorithm.

A.System model of ࢻ PCD
Consider a real time system consisting of n tasks.

Any task Pi can have ki different states: from complete
failure to perfect functioning. The entire system has K
different states as determined by the states of its taskes.
Let Y(t) is a multi state system (MSS) state at given
instance of time t, where Y(t)א{1,2,3….K}. Each state of
task has its accomplishment level Gk, where k א
{1,2,3…K} .The system output performance
distribution(OPD) can be defined by two finite vectors,
accomplishment level vector Gk and probability vector pk
such that, p={pk(t)}=Pr{G(t)=Gk} where 0≤k≤K. G(t) is a
random accomplishment level of a task of MSS and Pr(x)
is probability of event x.

The MSS behavior is characterized by its evolution in
the space of states. To characterize numerically this
evolution task, one has to determine the MSS reliability
indices. In order to define the MSS ability to perform its
task, a function f(G,W) is represented which defines the
desired relation between the MSS random
accomplishment level G and expected accomplishment
level W[138].

݂ሺܩ, ܹሻ ൌ ܩ െ ܹ (2)
When ݂ሺܩ, ܹሻ ൏ 0 then it is assumed that task has

completely failed its execution. MSS availability ܣሺݐሻ is

the probability that task’s execution will reach its desired
accomplishment level at a given instance of time.

݂ሺܩ, ܹሻ 0 t>0 (3)
Availability of task state at expected accomplishment

level W is given by
ሺܹሻܣ ൌ ∑ ሺீೖ ,ௐሻஹ (4)
Where steady state probability of MSS state k.

The resulting sum is is taken only for the states satisfying
condition ݂ሺܩ, ܹሻ 0.
A real time application is composed of number of tasks
and can be represented by a task interaction diagram.

ܦܫܲ ൌ ሺܯ, ሻ (5)ܧ
Where M is set of tasks ሺ݉ א ሻ and E is the set ofܯ

edges ሺ݁ א .ሻܧ
The edges in the task interaction diagram correspond

to the communication messages, ݉ associated with each
task represents messages coming from task pi to pj. The
source task is called parent or predecessor and destination
task is called child or successor. A task can not start
execution before it gathers all the messages from its
predecessor. If any of the messages is lost from
predecessor taskes to successor task accomplishment level
of G of the successor is going to reduce proportionally.
Hence in a given system, many taskes can perform at
different accomplishment level.

In such case overall accomplishment level of system
is also going to vary. In this way system and its taskes can
have an arbitrary finite number of states. The system is
termed as multistate system and its performance factor
can be calculated as

ீܧ ൌ ∑ ܩ

ୀ (6)

Here in this framework, use of design tool EVENT
STUDIO 2.5 has been done to design the system and
generate inter task communication diagrams.

Figure 2 shows simplified task interaction diagram
which is derived from

Figure 3 task interaction diagram generated by the
EVENT STUDIO.

Fig. 2: Simplified task network

 P6

 P4

 P1

 P5

 P0

 P2

 P3

2

3

4

3

5

4

3
2 2

4

13

5

3

2

2

Radhakrishna Naik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3436-3443

3438

Fig. 3 Process inretaction diagram generated by event studio

inL

Total number of incoming links to a task.

tL Total links associated with that task.

 Now from figure 2, task P6 is dependent on P0 .Then P6 is
calculated as

ሺ ܲሻ ൌ ሺ ܲሻሺ ܲ| ܲሻ (7)

ሺ ܲሻ ൌ

 (8)

 However here dependability of tasks is considered. Thus
the conditional probability is calculated by the following
equation.

ሺ ܲ ቚ ܲሻ ൌ ሺలתబሻ

ሺబሻ
 (9)

If one task precedes another, then equation 7 is true.
However, there are some tasks in task network which are
dependent on two or more tasks. In the above example, P4

is dependent on P0, P3 and P2 .Thus Bayes theorem is
used to evaluate conditional probability as shown in
equation 10.

ሺ ସܲሻ ൌ ሺ ܲሻሺ ସܲ| ܲሻ ሺ ଷܲሻሺ ସܲ| ଷܲሻ
ሺ ଶܲሻሺ ସܲ| ଶܲሻ (10)

There is various possible relative accomplishment
levels that characterize the performance of each task in
the task network which depends on number of incoming
links associated with that task. Various values of ܩ are
assumed depending upon ܩܮ.

Substituting values of and ܩ in equation 6,

various MSS performance contribution factor EG can be
calculated. Scheduling policy for soft real time system is
based on two parameters as shown in Table 3 and for hard
real time system is as shown in Table 4. It is quite
possible that values calculated will not be precise coming
in one category.

B.Classification of taskes on PCF and deadline
ܲ set of taskes.
 .set of classes :ܥ
 .PCF of each task :ܿ
 .Relative deadline of each task :ܦ
݊: Total number of tasks.
݇: Total number of classes.
ܲ ൌ ൛ ଵܲ, ଶܲ, ଷܲ, ସܲ … . . ܲൟ
ܥ ൌ ൛ܥଵ, ,ଷܥ,ଶܥ ସܥ … . . ൟܥ

ሼ ܲ ฺ ܲ א |ଵܥ ܲܥ ר ,ܥଵܥ ܿ ൌ ݄݃݅ܪ ר ܦ ൌ ,ݓܮ ݊
 ݇ 0ሽ

 else
ሼ ܲ ฺ ܲ א |ଶܥ ܲܥ ר ,ܥଶܥ ܿ ൌ ݄݃݅ܪ ר ܦ ൌ ,݄݃݅ܪ ݊

 ݇ 0ሽ
 else

ሼ ܲ ฺ ܲ א |ଷܥ ܲܥ ר ,ܥଷܥ ܿ ൌ ݓܮ ר ܦ ൌ ,ݓܮ ݊
 ݇ 0ሽ

 else
ሼ ܲ ฺ ܲ א |ସܥ ܲܥ ר ,ܥସܥ ܿ ൌ ݓܮ ר ܦ ൌ

,݄݃݅ܪ ݊ ݇ 0ሽ (12)

Table III: Classification of tasks for soft real time system

Priority Levels PCF(EG) Deadline(D)
Class-I High Low
Class-II High High
Class-III Low Low
Class-IV Low High

Table IV: Classification of tasks for hard real time system

Priority Levels PCF(EG) Deadline(D)
Class-I High Low
Class-II Low Low
Class-III High High
Class-IV Low High

C.Assumptions:

A1: Tasks are divided into mandatory and optional
portion.
A2: Data required for transmission as to successor

are tasked by mandatory portion.
A3: For scheduling dependent tasks, if predecessors

are from class-I, then its mandatory as well as
optional portion is executed. If predecessors
are from other than class-I, tasks are scheduled
only for mandatory portion.

A4: The semantics assumed is that one instance of all
tasks should be executed for every period. This
scheduler is of non pre-emptive type.

A5: It is assumed that, a task should get all the
messages to complete its goal. If any of the
messages is failed, then it is assumed that its
accomplishment level reduces accordingly.

D.Suggested scheduling policy
For index1 = class1 to class4
 Index 2 =task1 to MAXtaskINDEX1
 num=calculate_preceded_task(index2);
 for index3=0 to num
if (preceded[index3].mandatory=0
then

execute(preceded[index3].mandatory);
 setflag (preceded[index3].mandatory);
 endif
 endfor
 if(task[index2].mandatory=0 then
 execute (task[index2].mandatory);
 setflag(task[index2].mandatory);
 endif

Radhakrishna Naik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3436-3443

3439

 if (task[index2].optional=0 then
 execute (task[index2].optional);
 setflag(task[index2].optional);
 endif
 endfor
endfor

However it has been observed that in PCD algorithm
number of context switching and number of missing of
deadline are high. Therefore another scheduling strategy
suggested is αPCD.
E.Performance evaluation of algorithms

In order to evaluate performance of designed
scheduling algorithms, simulation is done for many case
studies with LDF, PCD and αPCD. A sample case study 1
for acyclic structure and case 2 for cyclic task structure is
illustrated as below.

Case study 1: Following case study elaborates
comparative performance of LDF, PCD and αPCD. The
task scheduling attributes and its LDF scheduling is
shown in the figure 6.

Fig. 4: Acyclic task network

Fig. 5: LDF scheduling of case study1

 Fig. 6: PCD scheduling of case study1

Fig, 7: αPCD scheduling with deadline of case study1

Fig. 8: αPCD scheduling with performance of case study1

 A

 B C

 E

 F D

Radhakrishna Naik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3436-3443

3440

Performance of LDF scheduling algorithm is shown
in the figure 5, where it does not miss any deadline. The
number of context switching observed is 5. Considering
performance of PCD scheduling algorithm as shown in
the figure 6, the number of tasks missing their deadlines
are 2 and context switching is 8 which is very high. The
peculiarity of PCD scheduling algorithm is that it is
considering two parameters, PCF and deadline and it is
also scheduling both cyclic as well as acyclic tasks. On
the contrary LDF is considering only deadline as a
parameter of priority and supporting only acyclic task
structure. PCD is more complex than LDF.
In order to remove these problems and improve the
performance of PCD, modified scheduling strategy αPCD
was developed. It has got two flavors. αPCD with
deadline where performance is same like LDF as shown
in the figure 8. Another flavor of αPCD is αPCD with
performance, as shown in the figure 9. Here priority is
given to performance due to which number of missing
deadline is 1 and context switching is 6. Here although
one task is missing its deadline, only its optional part of
that task is missing its deadline. Comparative
performance of LDF, PCD and αPCD is illustrated in
Table 5. Comparative missing of deadlines performance
of LDF, PCD and αPCD for acyclic task structure of two
case studies is as shown in the figure 10. Similarly
context switching performance for the same is elaborated
in the figure 11.

Table V: Comparative performance of LDF, PCD and αPCD for acyclic

tasks

Case
Study
No.

Framework
Context
Switching

Number of
tasks/taskes
missed
deadline

I

LDF 6 1

PCD 9 3
Alpha-
PCD

Deadline 9 2
Performability 9 3

II

LDF 5 0

PCD 8 2
Alpha-
PCD

Deadline 5 0
Performability 6 1

Fig. 9: Context switching performance of LDF, PCD and αPCD for

acyclic tasks/taskes

Fig. 10: Deadline missing performance of LDF, PCD and αPCD for

acyclic tasks

Case study 2 is intended for cyclic tasks where
performance of PCD, αPCD with deadline and αPCD
with performance algorithm is evaluated as LDF does not
support cyclic tasks.

Fig..11: Cyclic task network

Fig. 12: PCD scheduling of case study2

0

2

4

6

8

10

Case Study‐I Case Study‐II

LDF

PCD

0

1

2

3

4

Case Study‐I Case Study‐II

LDF

PCD

 A

 B C

 E

 D

Radhakrishna Naik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3436-3443

3441

Fig. 13: αPCD with deadline scheduling of case study2

Figure 14: αPCD with performance scheduling of case study2

For given cyclic task structure as shown in figure 12,
performance of PCD scheduling algorithm as shown in
figure 13, number of tasks missing their deadline is 1 and
context switching is 6. Modified scheduling strategy
αPCD with deadline algorithm’s performance for the
same task structure is shown in the figure 14 where
number of tasks missing their deadline are 0 and context
switching is 6. αPCD with performance algorithm is as
shown in the figure 15. Here no task is missing its
deadline and context switching is also 6.

Comparative performance for various case studies for
cyclic structure is illustrated in Table 6.Performance of
PCD and αPCD is elaborated in figure 16 and figure 17.

Table VI: Comparative performance of PCD and αPCD for cyclic task /
tasks

Case
Study
No.

Framework
 Context
Switches

Number
of tasks
missed
deadline

III
PCD 7 1
Alpha-
PCD

Deadline 7 0
Performability 7 0

IV
PCD 6 1
Alpha-
PCD

Deadline 6 0
Performability 6 0

Fig. 15: Context switching performance of PCD and αPCD for cyclic

tasks/taskes

Fig. 16: Missing of deadline performance of PCD and αPCD for cyclic

tasks

IV. CONCUSION
Novel scheduling algorithms are designed using MDE
analysis. The important aspects of these algorithms are

 These are non preemptive offline precedence
constraint task scheduling algorithms for
uniprocessor architecture.

 Two parameters are taken into account to decide
pseudo deadline for scheduling of tasks i.e. PCF
and relative deadline.

 These support both cyclic as well as acyclic task
structure.

 It gives optimal solution for around 75 % cyclic
as well as acyclic structures.

 This can be used as a tool by newly entrant real
time designer to view possible scheduling of
taskes at design phase itself so that he has a lot

5.4
5.6
5.8
6

6.2
6.4
6.6
6.8
7

7.2

Case Study‐
III

Case Study‐
IV

PCD

Alpha‐PCD
Deadline

0

0.2

0.4

0.6

0.8

1

1.2

Case Study‐
III

Case Study‐
IV

PCD

Alpha‐PCD
Deadline

Radhakrishna Naik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3436-3443

3442

of scope to adjust period of invocation and
deadline of taskes.

 This avoids further consequences and saves
considerable cost and time of development of
real time application

REFERENCES
[1] Liu C. and Layland J.W., “Scheduling algorithms for

multiprogramming in a hard real-time environment,” Journal
of ACM, 20(1): pp.46–61, 1973.

[2] E.G. Coffman, “Computer and Job-Shop Scheduling Theory,”
New York: John Wiley & Sons, 1976.

[3] J.K. Lenstra and A.H.G.R. Kan, “Complexity of Scheduling
Under Precedence Constraints,” Operations Research, 26(1):
pp. 23- 35, Jan. 1978.

[4] E.L. Lawler, “Deterministic and Stochastic Scheduling,
“Recent Developments in Deterministic Sequencing and
Scheduling: A Survey,” The Netherlands: Reidel, Dordrecht,
pp. 35-74, 1982.

[5] H. Kasahara and S. Narita, “Practical Multiprocessor
Scheduling Algorithms for Efficient Parallel Processing,”
IEEE Trans. Computers,33(1):pp. 1023-1029, Nov. 1984.

[6] W.W. Chu and K. Leung, “Module Replication and
Assignment for Real-Time Distributed Processing Systems,”
Proc. IEEE,75(5), pp. 547-562, May 1987.

[7] C.C. Shen and W.H. Tsai, “A Graph Matching Approach to
Optimal Task Assignment in Distributed Computing Systems
Using a Minimax Criterion, ” IEEE Trans. Computers, 34(3),
pp. 197- 203, Mar. 1985.

[8] P.Y.R. Ma et al., “A Task Allocation Model for Distributed
Computing Systems,” IEEE Trans. Computers,31(1): pp. 41-
47, Jan. 1982.

[9] J.B. Sinclair, “Efficient Computation of Optimal Assignments
for Distributed Tasks,” J. Parallel and Distributed Computing,
4: pp. 342-362, 1987.

[10] W.H. Kohler and K. Steiglitz, “Computer and Job-Shop
Scheduling Theory: Enumerative and Iterative Computational
Approach," John Wiley & Sons, pp. 229-287, 1976.

[11] M. Alfano. A. Di-Stefano, L. Lo-Bello, O. Mirabella, and J.H.
Stewman, “An Expert System for Planning Real-Time
Distributed Task Allocation,” Proc. Florida AI Research
Symposium, Key West, Fla.,May 1996.

[12] P. Altenbernd, C. Ditze, P. Laplante, and W. Halang,
“Allocation of Periodic Real-Time Tasks,” Proc. 20th
IFAC/IFIP Workshop, Fort Lauderdale, Fla., Nov. 1995.

[13] E.L.Lawler, “Optimal sequencing of a single machine subject
to precedence constraints,” JSTOR management science,
19(5), pp.544-546 ,1973.

[14] J.Sitakis, “Modeling real time systems-challenges and work
directions,” proceedings of the international Conference on
Embedded Software (EMSOFT 2001), Springer, LNOS 2211,
2001.

[15] K.Alstisen, G.Goessler and J.Sitakis, “Scheduler modeling
based on the controller synthesis paradigm,” Journal of real
time system, special issue on control approaches to Real Time
computing.23:pp.55-84, 2002.

[16] P.Binns and S.Vesta, “Formalizing software architecture for
embedded system,” proceeding of the first International
Conference on embedded software(EMSOFT 2001), Tohae
city, Springer, 2001.

[17] V.Bertin, E.Closse, M.Poize atel, “Taxys = Esterel t Kronos, a
tool for verifying real time properties of embedded system,”
Proceedings the conference on Decision and control, Dec-
2001.

[18] J.Sitakis, S.Tripakis, S.Yovine, “Building models of real time
system from application software,” Proceeding of the IEEE
,special issues on modeling and design of embedded ,pp.100-
111, Jan. 2003.

[19] Hong Pham, “Handbook of reliability engineering,” Springer
publication, pp.60-68, 2003.

Radhakrishna Naik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3436-3443

3443

